
Cookbook for enhancing the SAP Business Partner with
additional customer/vendor fields
Customer Edition 1.14 – February 12th, 2018

Source
The source of this document is SAP note 2309153. Please check this note regularly to get the latest
version of this document.

The example coding used in this cookbook is provided by SAP note 2295823. It might be necessary to
implement this note to have this coding available in your system.

Change History

Version 1.14 (February 12th, 2018)

- Chapter 3.10 – Field modification for blocked customer/vendor

Version 1.13 (May 04th, 2017)

- Chapter 3.5.2 – Necessary section to screen assignments in BDT customizing

Version 1.12 (April 20th, 2017)

- Wrong structure BUS_EI_EXTERN in section 2.3.2 corrected to CVIS_EI_EXTERN
- Wrong structure BUS_EI_EXTERN in section 5.2 corrected to CVIS_EI_EXTERN

Version 1.11 (April 19th, 2017)

- Hyperlinks of document references in section 1.3 updated

Version 1.10 (October 06th, 2016)
- New chapter 6 for mass processing (Central API) created
- Removing scenario where appended fields are not available in complex structure

BUS_EI_EXTERN

Version 1.00 (June 13th, 2016)

https://launchpad.support.sap.com/#/notes/2309153
https://launchpad.support.sap.com/#/notes/2295823

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 2 of 26

1 General Information
In SAP Business Suite (ERP 600 and Enhancement Packages), customer master data and vendor
master data transactions such as FD01, FD02, FD03, XD01, XD02, XD03, FK01, FK02, FK03, XK01,
XK02 and XK03 have been enhanced by customers with additional fields using the Business Add-In
(BAdI) technology. In the customer and vendor master dialog transactions, these fields were
integrated by adding additional sub-screens to the existing screens.

Moving to a SAP S4HANA release, traditional customer/vendor master transactions are made
obsolete and replaced by the business partner transaction BP. Because of this, all extension-specific
fields have to be integrated into the business partner.

This document provides a guideline how customers can transfer the enhancements they have made in
the customer/vendor transactions to transaction BP, so that a maintenance of these fields remains
possible after the upgrade to a S4HANA release.

Important
There are three different scenarios, which have to be considered differently:

Scenario A Integration of complete tables in customer namespace that refer to
 customer / vendor master

Scenario B Integration of own appends of customer/vendor master core tables
 (e.g. appends to tables KNA1 or LFA1)

Scenario C* Integration of a new development into the SAP Business Partner*

*Scenario C is not in scope of this document. New requirements with the goal to enhance master data
in S4 releases with own fields should be developed completely within the SAP Business Partner.

Please refer to the guidelines for enhancing the SAP Business Partner:

• BDT (Business Data Toolset) – Developer’s Manual

• Help Portal – Business Partner Extensibility

• Easy Enhancement Workbench (EEW)

Please find document links to these topics in reference table in chapter 1.3.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 3 of 26

1.1 Used tools and frameworks

Enhancements to the SAP Business Partner can be made by using the frameworks / tools mentioned
below:

• BDT (Business Data Tool Set) – Enhance dialog screens in transaction BP

• XO Framework (Extensible Objects) – Validate data and store them in memory

• CVI Synchronization – Map the data from BP to customer/vendor master
 and save them to the database

1.2 Idea in a nutshell

The BDT will be used to enhance the existing screens in transaction BP with the additional required
fields, tables or checkboxes. The XO framework will be used to validate and to store the data in the
memory. BAdI implementations within the CVI synchronization will collect the data from XO memory
and save it to the database, in case additional data is not part of the complex interface structure.

For mass processing the “Central API” is available. This interface provides the functionality for creating
and updating master data including both core and application data.

1.3 Document references

Topic Reference

BDT (Business Data Tool Set)
BDT Developer’s Manual
Link to SAP User Assistance

XO Framework (Extensible Objects)
SAP note “1623809 - Developer documentation for the XO framework”
Link to SAP note 1623809

CVI (Customer-Vendor-Integration)

SAP note “956054 - BP_CVI: Customer/vendor integration as of ERP 6.00”
Link to SAP note 956054

Help Portal
Link to SAP Documentation

Easy Enhancement Workbench (EEW)
Help Portal
Link to SAP Documentation

Business Partner Extensibility
Help Portal
Link to SAP Documentation
 Functions Extensibility

https://uacp.hana.ondemand.com/http.svc/rc/PRODUCTION/acaf8d5377a0ec23e10000000a174cb4/1511%20002/en-US/frameset.htm
https://launchpad.support.sap.com/#/notes/1623809
https://launchpad.support.sap.com/#/notes/956054
https://help.sap.com/doc/f3f9c5536a51204be10000000a174cb4/3.6/en-US/frameset.htm?771dc753b1081d4be10000000a174cb4.html
https://help.sap.com/erp2005_ehp_07/helpdata/en/4f/c18d5377a0ec23e10000000a174cb4/frameset.htm
https://help.sap.com/erp2005_ehp_07/helpdata/en/a9/c38d5377a0ec23e10000000a174cb4/frameset.htm

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 4 of 26

Table of Contents

1 General Information ___ 2

1.1 Used tools and frameworks ___ 3

1.2 Idea in a nutshell ___ 3

1.3 Document references ___ 3

2 General integration overview ___ 5

2.1 BDT Integration ___ 5

2.2 XO overview __ 6
2.2.1 Scenario A – Integration of own tables in customer namespace ______________________ 6
2.2.2 Scenario B – Integration of core table appends ___________________________________ 6

2.3 Saving data to the database __ 6
2.3.1 Scenario A – Saving data in own tables __ 6
2.3.2 Scenario B – Saving data in core table appends __________________________________ 6

3 Settings in BDT – Business Data Toolset ___________________________________ 7

3.1 General information about naming conventions in BDT _______________________________ 7

3.2 Own BDT application – Transaction BUS1 ___ 7

3.3 Separate BDT datasets – Transaction BUS23 ______________________________________ 7

3.4 Registering tables – Transaction BUSG ___ 8

3.5 BDT Assignments of screen->section->view->field group->field – Transaction BUS4 ________ 8
3.5.1 BDT screen sequences – Transaction BUS6 ____________________________________ 8
3.5.2 BDT screens – Transaction BUS5 ___ 8
3.5.3 BDT sections – Transaction BUS4 __ 8
3.5.4 BDT views – Transaction BUS3 ___ 8
3.5.5 BDT field groups – BUS2 __ 9

3.6 BDT events – BUS7 __ 9

3.7 Additional functions – BUS9 ___ 10

3.8 Assignments Dynpro field->DB field and DI field->DB field – BUSB and BUSB_DI _________ 11

3.9 BP_Views – BUSD __ 11

4 XO Framework – Extensible Objects ______________________________________ 12

4.1 Scenario A – Integration of own tables in your namespace ___________________________ 12
4.1.1 Create Memory Object (MO) class ___ 12
4.1.2 Create Persistence Object (PO) class ___ 12
4.1.3 XO Customizing __ 13

4.2 Scenario B – Integration of core table appends ____________________________________ 15
4.2.1 Create Validation Object (VO) classes __ 15
4.2.2 XO Customizing __ 18

5 CVI – Saving data to database ___ 19

5.1 Scenario A – Saving data in own tables in your namespace __________________________ 20

5.2 Scenario B – Saving data in core table appends ___________________________________ 22
5.2.1 Foreign key checks of appended fields __ 22

6 Mass Data Processing – Central API ______________________________________ 24

6.1 Scenario A – Processing data of non-core tables ___________________________________ 24

6.2 Scenario B – Processing data in core table appends ________________________________ 24

6.3 Data validation __ 24

6.4 Committing changes and error handling __ 25

7 Debugging ___ 26

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 5 of 26

2 General integration overview
For details about the Extensible Objects (XO) tool see note 1623809 (the note contains a developer
documentation as attachment). The complete XO customizing is maintained in transaction XO80. Only
the XO business object type BUSINESS_PARTNER is relevant for the CVI enhancement.

The purpose of this chapter is to provide an overview over the necessary activities using the
tools/frameworks mentioned in chapter 1.1. In chapters 3, 4 and 5 the detailed steps to be executed
per tool/framework are described. The relation between the overview chapter and the detail chapters
is as follows:

• chapter 2.1 (BDT integration) details see chapter 3

• chapter 2.2 (XO integration) details see chapter 4

• chapter 2.3 (Saving data to DB) details see chapter 5

2.1 BDT Integration

This sub-chapter provides the overview of the BDT integration of the CVI. You can find the detailed
activities in Chapter 4 below.

The integration of XO into BDT has been implemented in a generic way. The major part of the integration
is implemented generically. All further new datasets or core table appends that are integrated into BDT
using XO do not need to care about this part. If the integration is done as described below, the framework
will take care of the generic logic automatically. Especially most of the BDT events are treated
generically by the so-called BDT-adapter. The generic implementation is provided by class

• XO_BDT_ADAPTER (generic class for BDT integration).

On top of this, there is class:

• Class CVI_BDT_ADAPTER_INTERN with specific enhancements for CVI Business Partner
datasets

Within the BDT adapter classes you find methods (generic_*; e.g. GENERIC_ISDAT or
GENERIC_ISSTA), that are called by the BDT event function modules (XO_GENERIC_EVENT_* in
transaction BUS7). These methods are generically responsible for processing the corresponding
events for all Financial Services and CVI datasets. For these events, no individual implementation is
necessary.

In addition, there are BDT settings that need to be implemented individually. For example in the
corresponding view in BDT, a PBO and a PAI module need to be registered for every view. Within
these two function modules the selection of data for this dataset from XO memory as well as the
saving of the changed data into XO memory later on are implemented. Further individual BDT settings
that need to be considered are for example a new BDT application per extension (separate for
customer and vendor enhancements), and of course the complete screen construction (screens,
sections, views, field groups, datasets).

In addition dynpros (SE80-screens) need to be implemented in transaction SE80 including PBO and
PAI logic within the BDT function group that is responsible for the corresponding BDT application. The
already mentioned PBO- and PAI-function modules need to be implemented there as well.

You can find more details including a precise step-by-step description about the BDT implementation
in chapter 3 below.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 6 of 26

2.2 XO overview

In this sub-chapter, a rough overview of the XO implementation is provided. For more details have a
look into chapter 4.

2.2.1 Scenario A – Integration of own tables in customer namespace

For every dataset (database table) of customer or vendor to be supported in transaction BP, a
memory object needs to be assigned in XO customizing. Basic elements of a memory object are the
database table that shall be integrated into CVI (which usually already exists) and the class in which
the memory of this database table is kept during runtime. This class will not yet be available and has
to be implemented inheriting from one of the classes CVI_MO_CUSTOMER or CVI_MO_VENDOR

Within every memory object class, you need to make sure that:

➢ for every field for which a validation check is needed a separate method

VALIDATE_<FIELD_NAME> is created. Of course you can also create validation methods with
combined field checks like: If field1 is not initial -> verify field2 is not initial

➢ method VALIDATE_INTERN is redefined in a way that it calls SUPER->VALIDATE_INTERN at
the beginning and afterwards all individual validation methods that were added in the current
inheritance level.

Additionally a persistence object is needed to retrieve data from the database including a reference
class representing the persistence object. A persistence object needs to be assigned to every memory
object according to the following logic:

➢ If your table uses KUNNR or LIFNR as key field you can refer to one of the existing persistence

objects CUSTOMER for table key KUNNR or VENDOR for table key LIFNR.

➢ If the key field in your table is a different one you have to create a new persistence object referring
to a new class, which has to inherit from either CVI_PO_CUSTOMER or CVI_PO_VENDOR.

2.2.2 Scenario B – Integration of core table appends

Appends to customer/vendor core tables (KNA1, KNB1, LFA1, LFB1, …) are treated differently. For
these fields the memory object class already exists and it would lead to technical problems if a new
enhancement was created. Because of this for the integration of core table appends instead a validation
object (VO) represented by a VO-class needs to be implemented in XO. The VO has the purpose of
providing static validation methods, which can be used to validate the data of the append fields (e.g. in
the corresponding PAI modules). Additionally the validation methods will automatically be called during
the overall business partner validation to validate the entries in your fields.

2.3 Saving data to the database

2.3.1 Scenario A – Saving data in own tables

For saving data stored in your own tables, the CVI synchronization provides several BAdIs, which have
to be implemented in this scenario. Within these BAdI implementations, the data has to be retrieved
from the XO memory and written to the database via an update task module.

For more details about the BAdI implementations see chapter 5.

2.3.2 Scenario B – Saving data in core table appends

In this scenario, you also have to enhance the complex structure CVIS_EI_EXTERN of the CVI with
your appended fields. Make sure that you have enhanced both the DATA and the DATAX structure. In
this case, the database persistence is provided generically and there is no additional implementation
effort.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 7 of 26

3 Settings in BDT – Business Data Toolset
The Business Data Toolset (BDT) is used to integrate new fields into the business partner UI (transaction
BP). The BDT integration involves the creation of various field groups, screens, views and sections so
that the corresponding tabs and the screens appear in transaction BP.

The following aspects need to be considered, when implementing enhancements in BDT (the general
transaction for starting the BDT business partner control menu is /NBUPT).

3.1 General information about naming conventions in BDT

The central part in the naming for all BDT objects is the application name (<APPL_NAME>) defined in
transaction BUS1 (example: ZCUS).

All datasets, screens, sections and views are named with <APPL_NAME>number
(example: ZCUS01…ZCUS99).

All event function modules should have the following naming:
APPL_NAME>_BUPA_EVENT_<EVENT_NAME> (example: ZCUS_BUPA_EVENT_FCODE).

All PBO/PAI function modules should have the following naming:
<APPL_NAME>_BUPA_PBO_<VIEW_NAME> (example: ZCUS_BUPA_PBO_ZCUS01)
<APPL_NAME>_BUPA_PAI_<VIEW_NAME> (example: ZCUS_BUPA_PAI_ZCUS01).

Rules for the use of position numbers (e.g. when assigning function modules to BDT events)
➢ The objects assigned by help of position numbers will be processed in the order of the numbering

(e.g. the views assigned to a section will be constructed in a way that the view with the lowest
number is displayed first and all higher numbers below / same for the event function modules the
module with the lowest number assigned to an event is processed first and all others later
according to their number)

➢ Especially for the event function modules conflicts can occur. Function modules from SAP and
function modules from in customer name space are maintained and delivered in the same table.
As the position number is the main key field of this table it is essential that customers use a
position number that cannot be overwritten by SAP customizing. This is especially critical in case
you have to add one or more event function modules in transaction BUS7.

➢ In order to make sure that customer-specific entries are not overwritten by SAP customizing
delivery please stick to the following rule:
Use a position number where one of the last two digits are unequal to 0. All other digits of the
position number can then be freely chosen.

➢ Example: If you would like to register a new FCODE-function module (e.g.
ZCUS_BUPA_EVENT_FCODE) you can use one of the following position 3.600.010 or 4.000.001.
In the normal use case, it is essential that the SAP standard modules are processed before, so
please use position numbers that are higher than the ones of SAP-standard modules that are
already registered in this event in transaction BUS7.

3.2 Own BDT application – Transaction BUS1

You need to create your own BDT application(s) and assign them to your objects (views, bp views …).
Do not add the generic CVI applications CVIC or CVIV to your objects. You can also decide to split your
enhancement into different BDT applications. It necessary to use different BDT applications for customer
and vendor enhancements.

3.3 Separate BDT datasets – Transaction BUS23

You need to create your own datasets. Do not use the generic CVI datasets CVIC*/CVIV*. A separate
dataset is needed at least for the differentiation between general data, company code dependent data
and sales area dependent data for each customer and vendor master, however you should split your
enhancement into different datasets according to the business context. In SAP standard usually there
is one dataset per table (although in special cases deviations are possible). All data belonging to one
view can only be assigned to the same dataset (because the assignment is made by the dataset
assignment in the view).

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 8 of 26

3.4 Registering tables – Transaction BUSG

Every table that is added to CVI needs to be registered in this transaction with the corresponding
attributes (change document object, function module to get data, function module to collect data). If for
the enhanced table (or set of tables) a change document object exists, this needs to be added in the
corresponding field. In case no change document object exists, a new one might be created and
integrated.

3.5 BDT Assignments of screen->section->view->field group->field –
Transaction BUS4

For customer-specific fields always create a new section with its own frame title (maintained in column
“Title” in transaction BUS4). In case you have fields that do not belong to the already existing tabs you
can create new tabs (screens) and assign them to the corresponding screen sequence (transaction
BUS6 – screen sequence BUP001 for general data, screen sequence FS0001 for company code data
customer and vendor, screen sequence CVIC01 for sales data customer, screen sequence CVIV01 for
sales data vendor).

3.5.1 BDT screen sequences – Transaction BUS6

In case you have a completely separate set of screens (tabs), you can create your own subheader-id
(button in the subheader line in transaction BP). For this, you need a new screen sequence, which can
be defined here. In addition, the relevant screens need to be assigned to the screen sequence here.

3.5.2 BDT screens – Transaction BUS5

In case you have fields that belong to a screen sequence, but do not fit into any of the existing tabs, you
can create a new tab (screen) and assign it to an existing screen sequence. Assign your sections to the
corresponding screens also in transaction BUS5.

When creating a new screen, it is necessary to assign the correct header section to this screen. The
header section must be the first section in the screen, which means it must have the lowest item number.
There are different header sections for general, company code, sales area and purchasing organization
data which must be assigned:

Data Segment Header Section
Customer General BUP009 Header Data (General Screens)
Customer Company Code FI0201 Header Data (Company Code-Dependent Screens)
Customer Sales Area CVIC00 Header Data (Sales Area-Dependent Screens)

Vendor General BUP009 Header Data (General Screens)
Vendor Company Code FI0201 Header Data (Company Code-Dependent Screens)
Vendor Purchasing Org. CVIV00 Vendor: Header Data (Purchasing Organization)

3.5.3 BDT sections – Transaction BUS4

For any new field or set of fields, you need to create a section of your own with a speaking frame title
(see column “Title” in transaction BUS4). Assign only those views to a section that fit together. If the
business meaning is different, create a new section. Assign the views to the sections here as well.

3.5.4 BDT views – Transaction BUS3

The view is the central object in BDT. It contains the connection to the SE80-screen (in a function group)
where the input fields are defined. For differentiation between the BDT elements and the SE80 elements,
the German name for the SE80-screen, dynpro, is used here. The view also contains the PBO/PAI-
logic as well as an assignment of application and dataset. In addition, the fields are assigned to the
views via the field groups here.

The general rule should be: Do not assign too many field groups to a view. Only assign more than one
field group into one view if the fields belong to the same context. If in doubt, create different views for
different field groups.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 9 of 26

In addition, you need to add a PBO and PAI function module here in which the PBO and PAI logic is
processed. The coding in the PBO and PAI-modules can be mainly copied from the standard modules.
Compare for example:

• CVIC_BUPA_PBO_CVIC01 / CVIC_BUPA_PAI_CVIC01 for general customer data

• CVIC_BUPA_PBO_CVIC15 / CVIC_BUPA_PAI_CVIC15 for sales area customer data

• CVIC_BUPA_PBO_CVIC30 / CVIC_BUPA_PAI_CVIC30 for company code customer data

• CVIV_BUPA_PBO_CVIV01 / CVIV_BUPA_PAI_CVIV01 for general vendor data

• CVIV_BUPA_PBO_CVIV30 / CVIV_BUPA_PAI_CVIV30 for company code vendor data

• CVIV_BUPA_PBO_CVIV71 / CVIV_BUPA_PAI_CVIV71 for purchasing vendor data

All these modules are constructed in the following way: In PBO the data is read from the XO memory
and transferred to the dynpro structure. In PAI module, the changed data is saved back into the XO
memory for later saving. In addition, in PBO modules, the texts for F4-fields are also determined and in
PAI modules at the end the validation methods from the XO memory or validation object are called to
validate the changes.

In addition to the PBO and PAI function modules there are – of course – also the PBO and PAI modules
in the dynpro flow logic. Here you need to call the standard function modules provided by BDT:
BUS_PBO – to be called in a perform BPO, which in turn is called in the PBO module
BUS_PAI – to be called in a perform PAI, which in turn is called in the PAI module.
For an example, check the dynpros in function group CVI_FS_UI_CUSTOMER.

Attention: When you miss to call function modules BUS_PBO and BUS_PAI in the dynpro flow logic,
there will be problems with field modification and the behavior of the fields in dialog (e.g. fields available
for input in display mode or similar problems).

3.5.5 BDT field groups – BUS2

On field group level the fields from the dynpro are assigned.

General rule: only one field per field group! Only in exceptional cases, you should assign more than one
field to one field group. Field modifications are done on the basis of field groups and two fields that
belong to the same field group can only be set to “required“, “display“, “hidden“, “change“ or “unspecified“
together.

In addition, you need to add a function module for FMOD2 event in the field group. If you do not have
any specific field modification logic for your field groups you can add the standard FMOD-function
modules here:

• CVIC_BUPA_EVENT_FMOD2/CVIV_BUPA_EVENT_FMOD2 for general data

• CVIC_BUPA_EVENT_FMOD2_SALES/CVIV_BUPA_EVENT_FMOD2_PORG for sales
data/purchasing org data

• CVIC_BUPA_EVENT_FMOD2_CC / CVIV_BUPA_EVENT_FMOD2_CC for company code
data.

In case you have an additional requirement for field modification setting copy the coding of the
corresponding standard module to a function module in your name space and enhance it by your logic.

3.6 BDT events – BUS7

The big majority of BDT events is handled automatically by class XO_BDT_ADAPTER and
corresponding enhancements (classes inheriting from XO_BDT_ADAPTER, see chapter 2.1), provided
you have implemented your XO-customizing correctly.

You only need to care about BDT events in case you do anything special like for example adding some
function codes (buttons) for navigating to a popup or similar. In this case you need a separate event
function module (in above example an FCODE-function module) and assign it to the corresponding
event (e.g. FCODE).

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 10 of 26

In addition, it is necessary to implement additional event function modules for displaying the change
documents for your table(s) in transaction BP. Please have a look into standard CHGD* function
modules and implement an analogous logic for your tables

• CVIC_BUPA_EVENT_CHGD1 / CVIV_BUPA_EVENT_CHGD1

• CVIC_BUPA_EVENT_CHGD3 / CVIV_BUPA_EVENT_CHGD3

• CVIC_BUPA_EVENT_CHGD4 / CVIV_BUPA_EVENT_CHGD4

For event CHGD2, no function module needs to be assigned. If your tables are correctly integrated in
XO, function module XO_GENERIC_EVENT_CHGD2 will process the necessary logic generically.

3.7 Additional functions – BUS9

You need this transaction in case you have buttons (function codes) in your application. In order to
integrate a function code in the application the following steps are necessary:

1. Enter the function on your dynpro. Naming convention: The name of the push button needs to
have the prefix “PUSH_”. Example: PUSH_BUTTON1.

2. In the screen painter details in field “FctCode” you need to enter the name of the push button
again.

3. In order to react to the selection of the button during runtime by a user you need to implement
an FCODE function module (naming convention <APPL_NAME>_BUPA_EVENT_FCODE) and
implement the following coding here
 "set fcode as processed per default

 e_xhandle = true.

 case i_fcode.

 when 'BUTTON1'.

 "implement application-specific logic here

 when others.

 clear e_xhandle.

 endcase.

Please note that you need to remove the prefix “PUSH_” when catching the function code in
your FCODE function module (==> WHEN ‘BUTTON1’ and not WHEN ‘PUSH_BUTTON1’).

4. In order to make sure that the push button can be influenced using the field modification
adjustments, create a new field group (transaction BUS2) and assign the button to the field
group using the “Field Group -> Fields” sub-menu. The name of the button (including the prefix)
needs to be entered in column “field name”. Column “table” remains empty. In addition you
should assign an FMOD2-function module according to the rules described in chapter “BDT
field groups – BUS2”.

5. You have to create a separate view for the button according to the rules above in chapter “BDT
views – BUS3”. Maintain the dynpro in which the button has been implemented and assign the
field group created in “4” to the view.

6. Finally, the function code needs to be made known to the BDT. For this it has to be defined in
transaction BUS9. The following steps need to be executed for this:

a. Press button “New entries”.
b. In field “Function code”, enter the name of your function code without the prefix

(“PUSH_”).
c. In field “Function text”, enter a text for your function code. You can leave field “screen

sequence cat.” empty.
d. After that, you have to decide if you would like to rely the visibility of the function code

on either field group or view. Recommendation: use function “Activate using Status of
Field Group” and maintain visibility in section “Active per Status of Field Group” at the
end of the page.

 To have a reference to copy from you can have a look at the push button PUSH_CVIS_SEPA
 (BUS9), which is assigned to field group 309 and view CVIS01. The corresponding FCODE
 function module is CVIS_BUPA_EVENT_FCODE.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 11 of 26

3.8 Assignments Dynpro field->DB field and DI field->DB field
– BUSB and BUSB_DI

You need this transaction in case you have dynpro fields that have a different name than the
corresponding database fields. BDT needs to be able to assign the fields. Otherwise for example the
required-fields check will not work.

3.9 BP_Views – BUSD

This is the technical view on the business partner roles (see views V_TB003 / V_TB003A in transaction
SM30). You may think about creating your own roles instead of enhancing the standard roles.

In order to make sure that your enhanced fields are available in the corresponding roles add your
datasets and applications to the BP views. Differentiate between customer and vendor roles here.

3.10 Field modification status for blocked customer/vendor master

S/4 releases support the blocking of customer and vendor master without blocking the assigned
business partner. In such a case where an assigned customer/vendor is blocked while the business
partner is not, all users with standard authorization will not have any access to exclusive
customer/vendor based data in transaction BP. General data like names or addresses are still
accessible and editable in the business partner, but any changes to these data will no longer be
synchronized with the blocked customer/vendor master.

A user with “Data Privacy Officer” (DPO) authorizations, who opens a business partner which is not
blocked itself but assigned to a blocked customer or vendor in transaction BP, has access to all
customer/vendor data fields and sections. When the DPO-user switches transaction BP to change
mode, all fields you have added to transaction BP in context of customer-vendor-integration will be
editable (please note that changes to these fields will not be transferred to the blocked customer/vendor
when saving and will therefore not be saved!). Nevertheless, this is not a consistent UI behavior and
you should take the below measures to prevent the fields to be open for change. You need to create a
function module which sets the field status of your fields to “display” in that case and assign this function
module in BDT customizing, so that it is processed in FMOD1 event.

The function module should have the following naming convention:

<APPL_NAME>_BUPA_EVENT_FMOD1_DPP

Execute the following steps:
1. Make sure that SAP notes 2592806 and 2590430 are implemented in your system.
2. Create a new function module taking function module CVIS_BUPA_EVENT_FMOD1_DPP as

a reference. If you copy the code and adjust replace the name of the BDT application to your
own BDT application, your field groups will also be switched to display mode in case an assigned
customer/vendor is blocked.

3. Afterwards register your function module in BDT:
a. Open maintenance view V_TBZ3Q in SM30 and select application object BUPA
b. Add a new entry with

i. FGroupCrit: <APPL_NAME>000
ii. Description: CustVEnd Blocked -> Display
iii. Read function module: <Name of your function module>

4. Save this entry.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 12 of 26

4 XO Framework – Extensible Objects
This chapter provides detailed instructions about the integration into the XO framework. If you need
any details about XO, please see note 1623809 (contains a developer documentation as attachment).

XO customizing
For adaption, the XO customizing transaction SE80 is used. The relevant business object type for all
customer/vendor data is BUSINESS_PARTNER.

4.1 Scenario A – Integration of own tables in your namespace

This chapter describes the XO-related steps that are necessary to integrate additional (new / customer-
owned) tables into transaction BP.

4.1.1 Create Memory Object (MO) class

For each database table that shall be integrated into transaction BP a memory object class is needed.
The class has to inherit from class CVI_MO_CUSTOMER for customer data or from class
CVI_MO_VENDOR for vendor data.

Naming convention: CVI_MO_<TABLE_NAME>
Example: CVI_MO_ZCUST1

Validation
In the new class, it is necessary to create separate validation methods (static methods with public
visibility) for every table field that needs to be validated. You can also create methods to perform
combined validations using multiple fields. However, it is strongly recommended to have a low
granularity when creating the methods.

In addition, method VALIDATE_INTERN must be redefined. Within the redefinition first of all method
VALIDATE_INTERN of the super-class has to be called, before all new validation methods within this
redefinition are processed. You can compare for example the implementation in method
CVI_MO_KNA1->VALIDATE_INTERN. Method VALIDATE_INTERN is called in an overall check on
saving the business partner or when you explicitly press button “check” in business partner
maintenance.

In addition, the created validation methods must be called in the corresponding PAI function modules
for dialog input validation.

Class examples
CVI_MO_KNA1, CVI_MO_KNB1, CVI_MO_LFA1, CVI_MO_LFB1

4.1.2 Create Persistence Object (PO) class

If your table uses KUNNR or LIFNR as key field, no separate PO-class is needed. You only need to
assign the existing persistence object CUSTOMER or VENDOR to your memory object in the next
section.

If the key field of your table is not KUNNR or LIFNR you have to create a separate persistence object
class. The new class has to inherit from CVI_PO_CUSTOMER or CVI_PO_VENDOR. Now perform the
following steps:

1. Redefine method IF_XO_PERSISTENCE_OBJECT~READ_DATA.
Copy the coding from the inherited method (superclass method).
In the copied coding, change the select statement at the end according to your table key.

2. Redefine method IF_XO_PERSISTENCE_OBJECT~SORT_DATA_BY_KEY.
Copy the coding from the inherited method (superclass method).
Exchange the name of the assigned component ‘KUNNR’ / ‘LIFNR’ with the key field of your
table at the end of the method.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 13 of 26

4.1.3 XO Customizing

Execute the following steps to maintain the XO customizing for your objects:

1. Start transaction XO80.
2. Select Business Object Type BUSINESS_PARTNER from the initial popup.
3. Switch to change mode.
4. Make sure that you are in mode “Individual Settings” (ctrl+F4, 11th button in button line)

a) Persistence Object

This step is only needed when you have created an own persistence object in chapter 4.1.2. If you use
one of the standard persistence objects CUSTOMER or VENDOR, you can skip this step.

Open tree node “Persistence Objects” and create a new entry.

Name of Persistence Object = can be chosen arbitrarily
Description = can be chosen arbitrarily
Individual Implementation = Name of persistence object class created in step 4.1.2

Save this step.

b) Memory Object

Open tree node “Memory Objects”. Switch to change mode and create a new memory object entry.

 Name of Memory Object = Name of your table name (as in SE11)
 Description = can be chosen arbitrarily
 Alternative Key = KUNNR or LIFNR or other key field name of your table
 Individual Implementation = Name of memory object class created in step 4.1.1.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 14 of 26

Scroll down to…

Selected Persistence Object = CUSTOMER or VENDOR when your table uses KUNNR or LIFNR
 or name of your own persistence object from last step

Save this step.

c) Segment Object assignment

After creating the memory object this has to be assigned to the correct segment object.
Open tree node “Segment Objects” and assign your memory object to the segment object by drag and
drop or button functionality.

The correct segment object depends on the customer/vendor segment to which your table belongs:

 CUSTOMER_GENERAL = General customer data – e.g. KNA1, KNAT
 CUSTOMER_CC = Company Code data – e.g. KNB1, KNB5
 CUSTOMER_SALES = Sales Area data – e.g. KNVV, KNVI

 VENDOR_GENERAL = General vendor data – e.g. LFA1, LFAT
 VENDOR_CC = Company Code data – e.g. LFB1, LFB5
 VENDOR_PURCHASE = Purchasing Org. data – e.g. LFM1, LFM2

Save this step.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 15 of 26

4.2 Scenario B – Integration of core table appends

All appends of customer/vendor core tables like KNA1, KNB1, LFA1 or LFB1 are available in the
corresponding XO memory object out of the box. There is no need to create any new memory object or
any new class. The only thing to do here is to implement the validation logic for your appended fields.
Needed validations will be handled in a validation class, which is registered in XO customizing as a so-
called Validation Object (VO).

4.2.1 Create Validation Object (VO) classes

The maintenance of new fields from the customer/vendor core tables is already possible after integrating
the fields into BDT and making sure that the changes are transferred to XO-memory in the PAI function
modules. The only missing part is the validation of the new fields. In order to implement the validation
the following steps need to be processed. As an example we refer to table KNA1 in the below screen
shots. If you integrate appends of another core table unequal KNA1 replace objects, parameters and
variable names accordingly.

1. With SAP note 2295823 class CVI_FS_ENH_VO_TEMPLATE is available in the system. It is
recommended to create a copy of this class to implement an own Validation Object class.

2. Create an implementation for method IF_XO_VALIDATION_OBJECT~ON_VALIDATE_ME.
Refer to the implementation in class CVI_FS_ENH_VO_TEMPLATE as an entry point.
This example refers to appends on table KNA1 and has to be adjusted with the name of the
table which was extended with your append.

Example code from CVI_FS_ENH_VO_TEMPLATE ->ON_VALIDATE_ME :

 1. Use the correct table type of the customer/vendor table for these variables

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 16 of 26

3. If you need further data from other memory objects (database tables) have a look at section
“Further data needed…” in the example method above:

 2. Use the correct table type of the customer/vendor table for these variables

4. The example code calls three static methods VALIDATE_KNA1_FIELD1/2/3 for performing
the field validations. If possible, it is recommended to implement one single method for each
appended field to be validated.

Example code:

 0. Adjust all parameters and used variables accordingly to the appended core table
 1. Implement your validation logic here and set lv_error = true in error case
 2. Append error message to <result>-message

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 17 of 26

5. Call all created static validation methods in the interface method
IF_XO_VALIDATION_OBJECT~ON_VALIDATE_ME
like it is done in the example class.

6. Now implement method IF_XO_VALIDATION_OBJECT~REGISTER_HANDLER. Simply take

over the example code. No adjustment of this code is necessary.

Example code:

The created single static validation methods from step 4. shall be called in your PAI modules for the on
screen validation within the BP dialogue when data is entered by the user.

Please also have look at SAP note 2293713 if want to integrate foreign key checks provided by classes
CMD_EI_API_CHECK and VMD_EI_API_CHECK.

Attention Make sure that your implementation does not contain any BDT specific logic, like calling
 methods from class CVI_BDT_ADAPTER ADAPTER or calling function module
 BUS_MESSAGE_STORE to process an error message!
 Validation Objects are also processed in mass processes (Central API), so that BDT-
 specific coding could lead to a short-dump during runtime.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 18 of 26

4.2.2 XO Customizing

In the XO customizing (transaction XO80) open business object type BUSINESS_PARTNER.

Open tree node “Validation Objects” and create a new validation object referring to your validation
class.

Open the corresponding segment object (for KNA1 this is CUSTOMER_GENERAL) and
add the created validation object.

The correct segment object depends on the customer/vendor segment to which the memory object of
the appended table is assigned:

 CUSTOMER_GENERAL = General customer data – e.g. appends on KNA1, KNAT
 CUSTOMER_CC = Company Code data – e.g. appends on KNB1, KNB5
 CUSTOMER_SALES = Sales Area data – e.g. appends on KNVV, KNVI

 VENDOR_GENERAL = General vendor data – e.g. appends on LFA1, LFAT
 VENDOR_CC = Company Code data – e.g. appends on LFB1, LFB5
 VENDOR_PURCHASE = Purchasing Org. data – e.g. appends on LFM1, LFM2

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 19 of 26

5 CVI – Saving data to database
While maintaining business partner data in transaction BP the data are only retrieved and transferred
back to the XO memory and validations are executed. Saving of changed customer/vendor data to
database is collectively triggered on commit after the button “Save” has been pressed. The reason for
this is that the customer/vendor data need to be saved together (either save all data or no data). As the
central data needs to be mapped from the corresponding business partner structure before they are
available in the customer/vendor structure, the data can only be saved to database after the mapping
has been performed. Mapping and saving to database is triggered by the business partner outbound
processing which starts the synchronization

The CVI offers two enhancement spots for saving data:

 CUSTOMER_EXTENSION and VENDOR_EXTENSION.

These enhancement spots contain several BAdI definitions, which provide initialize, validate and save
functionality.

 CUSTOMER_EXTENSION VENDOR_EXTENSION

BAdI

CUSTOMER_EXTENSION_AUTH_CHECK VENDOR_EXTENSION_AUTH_CHECK

CUSTOMER_EXTENSION_CHECK VENDOR_EXTENSION_CHECK

CUSTOMER_EXTENSION_COMPLETE VENDOR_EXTENSION_COMPLETE

CUSTOMER_EXTENSION_INITIALIZE VENDOR_EXTENSION_INITIALIZE

CUSTOMER_EXTENSION_OUTBOUND VENDOR_EXTENSION_OUTBOUND

CUSTOMER_EXTENSION_UPDATE VENDOR_EXTENSION_UPDATE

How-to recommendation
It is necessary to create one enhancement implementation only for each enhancement spot. Each of
these two enhancement implementations should use only one single implementing class containing
implementations for all BAdIs that are marked in red in the above table. So in case you integrate both
customer and vendor data in your application you will have only two enhancement implementations and
only two implementing classes after finishing the implementation.
Both classes must contain at least one public static attribute to store KUNNR / LIFNR.
.

Example
A created enhancement implementation containing all three BAdIs should look like this:

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 20 of 26

5.1 Scenario A – Saving data in own tables in your namespace

In this scenario, the data of the newly integrated tables need to be retrieved from the memory object
and then saved to database. To save the data into the corresponding database table BAdIs
CUSTOMER_EXTENSION_UPDATE or VENDOR_EXTENSION_UPDATE are needed.

In addition it is necessary to implement BAdIs CUSTOMER_EXTENSION_COMPLETE respectively
VENDOR_EXTENSION_COMPLETE. The reason for this is that the UPDATE BAdIs are called without
KUNNR / LIFNR of the currently processed customer/vendor. For supporting mass data processing, it
is important to make sure that the UPDATE BAdIs only save the data of the currently processed
customer/vendor.

With SAP note 2295823 class CVI_FS_ENH_CUSTOMER_BADI_SCENA is available in the system
containing implementation examples for all three BAdI definitions. This class should be used as copy
source for creating own implementations.

1. Implementation CUSTOMER_EXTENSION_COMPLETE / VENDOR_EXTENSION_COMPLETE
To have the current customer/vendor number available in the update BAdIs implement the following
logic in your implementation of CUSTOMER_EXTENSION_COMPLETE respectively
VENDOR_EXTENSION_COMPLETE.

1. Read customer/vendor number from the transferred structure CS_CUSTOMER / CS_VENDOR
2. Store customer/vendor number in a corresponding static attribute of your implementing class
3. Read customer/vendor number in your implementation of BAdI

CUSTOMER_EXTENSION_UPDATE / VENDOR_EXTENSION_UPDATE from the corresponding
attribute of your implementing class

Example from CVI_FS_ENH_CUSTOMER_BADI_SCENA->IF…~COMPLETE

Remark: This BAdI will be called multiple time in case of simultaneous changes on different
 data segments (KNA1, KNB1, KNVV …). But only in the first call you can rely on a
 filled KNA1 / LFA1 segment containing the needed KUNNR / LIFNR.
 Therefore the check that KUNNR / LIFNR is not initial is needed here.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 21 of 26

2. Implementation CUSTOMER_EXTENSION_UPDATE / VENDOR_EXTENSION_UPDATE
In the implementation of method IF…~UPDATE_MODULES execute the following steps:

1. Retrieve the data from the corresponding Memory Object
2. Ensure that you process only data of the current customer/vendor
3. Call your database update function module in update task.
4. In addition the creation of change documents has to be triggered here.

Attention: Database updates must be performed in update task!

Example from CVI_FS_ENH_CUSTOMER_BADI_SCENA->IF…~ UPDATE_MODULES

1. Use the table type of your own table for these variables

The provided example coding will determine which entries have to be inserted, updated or deleted
from the database.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 22 of 26

5.2 Scenario B – Saving data in core table appends

You have to extended the complex structure CVIS_EI_EXTERN with your appended fields in the
structures DATA and DATAX in the corresponding core table section.
After that, there is nothing more to do here. Since all of your appended fields exist now in
CVIS_EI_EXTERN these will be processed by the CVI standard functionality.

Remark
With implementation of SAP note 2295823 class CVI_FS_ENH_CUSTOMER_BADI_SCENB might be
available in your system delivered. This was needed for an earlier enhancement concept supporting a
constellation where appended fields are not added to the complex structure CVIS_EI_EXTERN. Since
this concept is no longer recommended, this example coding is not needed any more.

5.2.1 Foreign key checks of appended fields

If your appended fields could have a foreign key check definition, you have to implement the
corresponding BAdI so that it will be performed automatically.

 CVI_CUSTOM_MAPPER_ENH

BAdI
Method

MAP_CUSTOMER_FOREIGN_KEY_TABLE
Map customer relevant foreign key
check data

MAP_VENDOR_FOREIGN_KEY_TABLE
Map vendor relevant foreign key check
data

Details on Foreign key check enablement

Requirement
Industry specific CVI enhancements need to perform a foreign key check at the PAI level for the fields
of their application. There is no public method available which executes the foreign key check.

Solution
For processing generic foreign key checks in each of the two classes VMD_EI_API_CHECK and
CMD_EI_API_CHECK for vendor master and customer master the following two methods have been
introduced:
STRUC_FOREIGN_KEY_CHECK_EXTRNL and FOREIGN_KEY_CHECK_EXTERNAL.

1. Method STRUC_FOREIGN_KEY_CHECK_EXTRNL: This method is used to perform foreign key

check on one line of a database table. This method has the following import parameters:

IV_TABLENAME: Table name as string.
IS_TABLEDATA: One line of table IV_TABLENAME.

This method calls the FOREIGN_KEY_CHECK_EXTERNAL method internally transferring the
where clause (in parameter IV_WHERE_CLAUSE).

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 23 of 26

2. FOREIGN_KEY_CHECK_EXTERNAL: This method is used to perform foreign key check on a
single field of a database table. This method has the following import parameters:

IV_TABLENAME: Table name as string.
IV_WHERE_CLAUSE: Optional parameter that must not be provided when called
from
 outside the class. This parameter is only provided when the method is
 called from method STRUC_FOREIGN_KEY_CHECK_EXTRNL.
IV_FIELDNAME Name of the field in table <IV_TABLENAME> for which the foreign
 key check has to be performed.
IV_FIELDVALUE: Value of the field in table <IV_TABLENAME> for which the foreign
 key check has to be performed.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 24 of 26

6 Mass Data Processing – Central API
Maintaining new integrated fields in mass processing can be done by calling method
CL_MD_ BP_MAINTAIN=>MAINTAIN.

Before passing data to CL_MD_ BP_MAINTAIN=>MAINTAIN it is highly recommended to perform the
pre-requisite field checks with method CL_MD_ BP_MAINTAIN=>VALIDATE_SINGLE. To get all the
relevant validation checks the BP grouping in the BP complex structure and the account grouping in the
customer/vendor complex structure have to be transferred along with all the other key data.

Again, the same two scenarios as in dialog processing need to be distinguished:

6.1 Scenario A – Processing data of non-core tables

The following steps need to be executed:

• Call method CL_MD_BP_MAINTAIN=>MAINTAIN_NON_CORE_VALUE with the table name

and the data. This method converts the transferred data into a data type (RAWSTRING) which

can be transferred to method CL_MD_BP_MAINTAIN=> MAINTAIN. The converted data is

returned in parameter ET_TABLE_EXT.

• The mass processing is started by calling method CL_MD_BP_MAINTAIN=> MAINTAIN.

Before calling this method the converted data (ET_TABLE_EXT) needs to be integrated into

the complex structure that is transferred to CL_MD_BP_MAINTAIN=>MAINTAIN

(sub-structure CVIS_EI_EXTERN-EXT_APPL_DATA)

• The transferred data of application owned tables will be automatically saved in the XO

memory and can be retrieved in the update BADI later on as described in section 5.1.

6.2 Scenario B – Processing data in core table appends

If your fields are available in the complex structure you can transfer them directly to method
CL_MD_ BP_MAINTAIN=>MAINTAIN to update your fields.

6.3 Data validation

For both scenarios A and B you have to create an implementation of the corresponding Check-BAdI in
an enhancement implementation that belongs to your area. In the following table, you find the available
BADIs that can be implemented for the two enhancement spots CUSTOMER_EXTENSION and
VENDOR_EXTENSION.

 CUSTOMER_EXTENSION VENDOR_EXTENSION

BAdI

CUSTOMER_EXTENSION_AUTH_CHECK VENDOR_EXTENSION_AUTH_CHECK

CUSTOMER_EXTENSION_CHECK VENDOR_EXTENSION_CHECK

CUSTOMER_EXTENSION_COMPLETE VENDOR_EXTENSION_COMPLETE

CUSTOMER_EXTENSION_INITIALIZE VENDOR_EXTENSION_INITIALIZE

CUSTOMER_EXTENSION_OUTBOUND VENDOR_EXTENSION_OUTBOUND

CUSTOMER_EXTENSION_UPDATE VENDOR_EXTENSION_UPDATE

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 25 of 26

Example taken from the customer extension BAdI:

Call your validation methods within your implementation to validate your data that are passed in
parameter IS_CUSTOMER_EXT. In case of an error, fill the returning parameter CS_ERROR
accordingly with the error indicator and the error message(s) to be returned.

Please also have look at SAP note 2293713 if want to integrate foreign key checks provided by classes
CMD_EI_API_CHECK and VMD_EI_API_CHECK.

6.4 Committing changes and error handling

In order to execute the data changes and to trigger the database update, function module BAPI_
TRANSACTION_COMMIT must be called after the call of method CL_MD_BP_MAINTAIN=>
MAINTAIN. A simple COMMIT WORK is not sufficient, because it does not refresh the buffers. Since
the CVI is running on commit, all errors raised during synchronization will create an entry in the PPO
(Post-Processing-Office), in case PPO is set to active in customizing, or lead to a short dump in case
PPO is set to inactive. In case of an error with active PPO, the BP will be saved, whereas the
corresponding customer/vendor data will not be saved/updated (which means a data inconsistency
between the objects until the error has been solved and the changes have been reloaded). In case of a
short dump due to inactive PPO, all changes will be rolled back and no changes will be saved in any of
the objects.

In case PPO is active, you can call method CL_MD_BP_MAINTAIN-> GET_PPO_MESSAGES after
function module BAPI_TRANSACTION_COMMIT has been executed. This method will return all logged
PPO entries of the current LUW in parameter E_RETURN.

There is also transaction MDS_PPO2 to display the created PPO entries.

Cookbook – Extending SAP Business Partner with customer/vendor datasets

© Copyright SAP SE 2018 Page 26 of 26

7 Debugging
Places to have a look in debugger, when problems occur:

Class CVI_BDT_ADAPTER_INTERN (or corresponding sub-classes): set breakpoints in methods
“event_*”, for example:

• EVENT_DSAVC: xo event finalize is processed to replace the preliminary number ##1 by the
final number

• EVENT_DSAVE: xo-events ON_COMMIT_START and ON_COMMIT_END are triggered
(responsible for saving the data to database)
-> Exception: for CVI datasets the saving to database is done in CVI BAdIs

• EVENT_DLVE2: xo event cleanup is triggered to clear the complete memory and all object
instances (in dialog in transaction BP the XO_EVENT is registered on commit level 99, so that
it is processed after the synchronization has been finished – otherwise the memory-object
methods ON_DELIVER_CUSTOMER_DATA data would not return any data when called
during mapping)

XO_BUSINESS_FACTORY=>GET_INSTANCE: here the XO-instance for the current business
partner is created (or returned)

Memory object classes (like CVI_MO_KNA):

• in method GET_DATA(_NEW) the data are read from memory, on first call the data are
selected from database by communication with persistence layer

• in method SET_DATA(_NEW) changed data are transferred to the memory for later saving

• in methods VALIDATE_* the validations for the different fields of the corresponding database
table are processed

• in method VALIDATE_INTERN all VALIDATE_* methods are processed for an overall check
of all fields of the current table

Mapping (is processed on commit!)

• class CVI_MAPPER triggers the mapping (Customer: Method MAP_BPS_TO_CUSTOMERS,
Vendor: MAP_BPS_TO_VENDORS)

• actual mapping of different datasets is done in class CVI_FM_BP_CUSTOMER

• Interesting method in class CVI_FM_BP_CUSTOMER is GET_ENHANCEMENT_DATA, here
event DELIVER_CUSTOMER_DATA is raised, on which all memory object classes of CVI-
standard have registered themselves; as a consequence in all memory classes the method
ON_DELIVER_CUSTOMER_DATA is triggered, by this the data from business partner XO
memory is transferred to the complex customer structure

Logic for vendor is analogous in class CVI_FM_BP_VENDOR

Save customer/vendor master data to database

• method CMD_EI_API= >MAINTAIN / VMD_EI_API= >MAINTAIN
Core tables are saved here automatically

• Implementation in Enhancement Spots CUSTOMER_EXTENSION and
VENDOR_EXTENSION

